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ABSTRACT

A communieation system, which transmitg letters from an M-ary
source alphabet through an additive white Gaussian noise channel, is
considered. The source letters are encoded for transmission using an
M-ary block code, Code words are transmitted bit by bif through the
channel, The receiver makes hardbit decisions on the received signals,
performs a correlation operation to determine the likeliest transmitied
code word, and then decodes this word to vield a received letter,

Two types of M-ary block codes are considered. For each type
we attempt to derive the probability Pz of a block error, given various

€

values of M (number of blocks), N (bits per block, or block length), and
Py, {the probability of a bit error),

The analysis points out the need for investigation of a special-

purpose gtatigtical device so that P,z canbhedetermined for large values
of M and N,
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PROBABILITY-OF-ERROR CONSIDERATIONS FOR
CERTAIN M-ARY BLOCK CODES WITH BIT-BY-BIT DECISIONS

M-ARY COMMUNICATION SYSTEM

The communication system that will be considered in this report is shown in Fig. 1.
The source consists of an M-ary alphabet A with letters 4 ;) Agreees aye Every T
seconds the source emits a letter a;, which the encoder accepts as an input. The en-
coder has stored an M-ary code consisting of M blocks Bys Bpsv-+s By each having N
bits (zeros and ones), and an encoding function f, which is a one to one mapping of the
alphabet A onto the M biocks. For each received letter a;, the encoder function f
determines a corresponding block B,. Every T seconds the encoder emits a block of
N bits b, ;0= 1 2,...,N) which the transmitter accepts as an input. The transmitter
is eqmpped with a binary signaling set {8,(t), 8;(t)}. The transmitter uses the received
bits b;; (; = 1,2,...,N) to determine the signaling sequence [$, (t), Sy (B« - -8 (D]
One rule whlch could be used to determine the N bit signals 5, (t) (j= 1, ,N) is to set

8ij(8) = Sp() i by; = 0, and S;;(t) = Sy(1) i by, = 1. Every T seconds the tra.nsmit_ter
emits a sequence of N bit mgnals which the channel accepts as an input. The channel
adds white Gaussian noise to each bit signal resulting in a sequence of N distorted bit
signals [X) (t), Xp(t)s+-+,Xy (t)). The receiver accepts such a sequence of N distorted
bit signals every T seconds, employs a bit-by-bit detection procedure, which depends
on the type of binary signaling set utilized at the transmitier, and makes a bit decision
dj on each distorted bit signal X;(t)(j = 1,2,...,N). This block D of N bit decisions is
the receiver’s estimate of the transm1tted block B;. Every T seconds a block of hit
decisions D is transferred to the decoder which accepts it as an input. The decoder
has stored the same encoding function f and M-ary block code(M by N matrix) which is
stored in the encoder. The decoder determines the correlation between the block of
bit decisions D and each of the blocks B;(i=1,2,..., M), i.€., Py, Py..., 2y and
chooses the maximum ( Py AX) among these M values.

If oyax = £; then this implies that the bit decision block D is most like block B..
Using the inverse encoding funetion f—*, which exists as t is one to one and onto the
receiver determines the likeliest transmitted letter, i.e., the letter a; corresponding
to the block B;. Every T seconds a letter is transferred to the destination.

If 3, = a;, then there was no error in transmitting the letter through our M-ary
communication system. If a; # a;, then an error has occurred. An error occurs if
the noise causes a sufficient number of errors in the block of bit decisions D so that
pMAx # p;. We will assume also that any correlation ties result in an error, i.e., if

wax = fi = pj (i # i), thenan error has occurred. Further we can allow the encoding
functmn f, the M-ary block code, and the binary signaling set to change for each letter
transmitted through our M-ary communication system.

M-ARY BLOCK CODES

The type of M-ary block code utilized at the encoder and decoder is of great im-
portance in minimizing errors. We will consider the error- correcting capabilities of
two types of M-ary block codes.
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ENCODER FUNCTION: f )
CHANNEL
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Fig. 1 - Block diagram of M-ary communication system
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The first type of M-ary block code is called the M~ary equidistributed random
orthogonal {ERQ) block code. If Ny; and Ny; denoie the number of zeros and ones,
respectively, in block B, (i =1,2,...,M), and Pi; denotes* the unnormalized correlation
between blocks B; and B; (i, j =1, 2,...,M), i.e., the number of bit agreements minus
the number of bit disagreements between B; and B;, then for an M-ary ERO block code
we have, assuming N/2 and N/4 are integers, the conditions

(i) Nyi= Ny; = N/2( =1,2,...,M), i.e., there are an equal numher of zeros and
ones in each block, and

0, i# ]
(i, j=1,2,..., M)
N, £ = j

(i) py; = [
That is, between any pair of blocks there are an equal number (N/2) of bit agreements

and bit disagreements. Due to conditions (i) and (ii) we must haveM < N - 1, ° '

By definition, the all zeros and all ones blocks do not belong to any M-ary ERO block
code.

An example of an M-ary ERO block code for M = 3 and N = 8 is given by

B;=1[0,1, 1,0 1,0, 0, 1]
B,=1[0,1,0 1,0, 1, 0, 1]
[0, 0, 1,1, 1,1, 0, 0].

e
i

The second type of M-ary block code is called the M-ary pseudo-orthogonal (PO)
block code. An M-ary PO block code is defined in the following manner: the N bits of
each block B;(i = 1,2,...,M) are determined from N independent Bernoulli trials where,
for each trial k(k = 1,2,...,N), Pb,, = 0) =P(b;, = 1) = 1/2, Further, each block is
determined in this manner independently of all other blocks. There is no restriction on
M for an M-ary PO block code. If N, and Ny; represent the number of zeros and ones,
respectively, in block B,, then for an M-ary PO block code, N,; and Ny; are random
variables having a binomial distribution B(n, p) with parameters n=N and p = 1/2 for
each i=1,2,...,M. Also, if D;; denotes the number of bit disagreements between
blocks B, and B;, then, for an M-ary PO block code, D;; is a random variable having

a binomial distribution B(n,p) with parameters n=N and p = 1/2 for alli,j=1,2,...,M
where i #j.

An example of an M-ary PO block code for M =3 and N = 8 is given by

B, =00, 1,100 0 0, 1]
B,=1[1,1,0 1, 1,0, 0, 1]

B;=10,0,0,0 0, 1,0, 1).

—
*

N
P =Z([bik g bjk] - [bik @ bjk])’ where @ denotes summation modulo two (exclusive or) and &
k=1

denotes equivalence (not exclusive or).
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In this example, Ny = 5, Ny3= 3, N,3 5 3N p=5,N3= 6,N3=2,D,= 4
Dy5 = 3, and Dy; = 5.

Methods of generating M-ary ERQ and M-ary PO block codes are discussed in App.
A. Also in App. A is a discussion of the effect of a bias in the generation of M-ary PO
block codes.

PROBABILITY P, OF A BLOCK ERROR
Introduction

Now we will examine the probability of an error for M-ary ERO and PO block codes.
Since each source letter is transmitied in the form of a block of N bits, we will refer to
the probability of an error with respect to our M-ary communication system, 1.e. the
probability that the received letter does not egual the trangmitted lefter, as the proba-
bility of a block error, which will be denoted by P,i. The probability of a block error
depends functionally on the type of block code employed (ERQ or PO), the number M
of bloeks in the code, the number of bits N in each block, and the probability of a bit
error, which will be denoted by P.,,. The probability of a bit error is determined by
the type of binary signaling employed at the transmitter and the type of detection employed
at the receiver.

B for Binary Block Codes
We consider now the determination of P.g for binary (M = 2) block codes.

¥ B = {By, B,}is a binary ERO block code, then from condition (ii} of ERO blocks
we know, assuming that N/2 and N/4 are integers, that there are exactly N2 bit agree-
ments and N/2 bif disagreements between B; and B;. In determining P, ; we need con-
sider only the N2 bii disagreements. This is so because bit decision errors affect the
correlation decision only with respect {0 these bits. Hence, a block error occurs only
with N/4 or more bit decision errors in the N/2 hit disagreements because N/4 bit
decision errors cause a correlation tie (o = o, = £,), and more than N/4 bit decision
errors cause a correlation error (o < o, = o, 1f By was transmitted, or o, <z = v
if B; was transmiited). Hence,

N2 s -
- k nN/Z2—
Py (ERO, 2 N, P ) =3~ ( . )PebQ 2k,
k=N/4

These curves are given in Fig. 2. Clearly, as P, tends to zero, P (ERO, 2,N, P_,)
tends to zero. Binary ERO block codes were considered in a previous report (1). The
curves given in that report can he used to compare P_g for various types of binary
signaling sets and detection procedures.

If B = {By,B,} is a binary PO block code, then from the properties of PO blocks we
know that the number of bit disagreements between B, and B, (I;,) is a binomially
distributed random variable B(n,p) with parametersn= N andp = 1/2.

Hence, the probability of d disagreements between B; and B, is given by

(@

Pp () =2 (d=0,1,..., M.




Now, given d disagreements, a block error occurs if more than d/2 (d even) or more
than {(d+1)/2 (d odd) bit decision errors ocecur.

PoplERT,2, M, Py}
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Fig, 2 -~ Block error probability Py fora
binary (M=2) ERO block code as afunction
of the bit error probability P, and the
block lengih N

probability of a block error is given hy

Hence

l

2 : dYy ok gd-—k
(k) Pecheb

k=d/2, or (d+13}/2

N (N) a

1 2 : d 2
P PO, 2, N, P = — ¢+ Pl
eB( eb) ol QN

d=1 k=d/2, or (d+1)/2

These curves are given in Fig. 3.

Clearly, as P, tends to zero, Py (PO, 2,N, P,;,) tends to the value (1/2¥. This
value is the probability that there are zero disagreements between blocks B, and B,. If

this occurs, then we can have no distinguishable communication of letters since the two
blocks which could be transmitted are exactly alike.

(

d
k

Thus, given d disagreements, the

k d -k
)peerb :

Thus, independent of any bit

errors, a correlation tie will always occur, resulting in a block error.

Suppose now that our binary PO block code has a bias ¢, i.e., Dy, is a binomially
distributed random variable B(n, p} with n = N and p= 1/2 -2.2,
d disagreement between B; and B, is given by

Thus, the probability of
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Pblz(d) = (g) [(1/2y — 2219 [(i/2y + 2e2IN-d (g=0, 1,...,N).

Since the probability of a block error given d disagreements remains unchanged,
we have

P_g(PO, £(bias), 2, N, P_,) =

2y +2:2" + (™ () - 28" (12 + 2 2Ypr, odrHd.
d
a=1

k=a/2, er [d¥13/2

Clearly, as P, tends to zero, Pg(PO, e(bias),2,N,P4) temis to the value [(1/2)+2¢ N
Note that this value is larger than the corresponding value [1/2)T found in P g (PO, 2, NP ).
This shows that a bias increases the probability of zero disagreements.

When the P,g (PO, e(bias),2,N, P_,,) curves were computed, it was found that only for
larger values of N and « {say ¢ =20.05) and/or for P, small could any significant
difference be found from the P,p(P0,2,N, P,,) values.

Minimum Distance Considerations for M-ary PO Block Codes

Let us determine the asymptotic value of P_,(PO,M, N, P.y) a5 P, tends io zero.
First, we consider the probabilify that, given M and N, the minimum number of dis-
agreements between the trangmitted block and any other PO block is d ;. Let us denocte
this probability by P{d,;,, M:N). It is not difficult to show that this probabﬁlty is given by
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M-1-k
N

o ] .

Pld o M) = 2N ] 2N , d

1

- . =N
SN(M—1) min

These curves are given for various values of M and N in Fig. 4. Now the asympiotic
value of P, (PO, M, N, P.,) 28 P, tends to zero is determined by the probability that the
number of disagreements between the transmitted block and any of the other PO blocks
is zero, i.e., P(dy;, = 0,M,N). This value is given by

P, = 0,4 N) = E (M; ) —'I‘E ':(ZN_l)]M_

N N
- 2! 2

1~k

Table 1 gives asymptotic values of P.g for various values of M and N.

Now suppose we have an < bias. Then letting

min N_dmin
X ((1/2) +-2¢7]

d
(dmbjn) [(1/2) - 2¢2)

and
N
Y:Z (?) (/2 - 237 (12 + 2637,
JF=dgintt
we have
M--1
E (Mgl) XkyM-1-k g = 0,1,...,N-1
k=1
P(dmin- M, N, ¢ (bias)) =
(12 20" g oy
and

M-1
P(d_. = 0,M N, e(bias)) =Z (1) 1y + 2™ {1 - a2y ¢ 269"
%=

Tables 2 to § give values for P(d, ;. = 0, M,N, e(bias) for « = 0.001, 0.01, 0.05, 0.1, and
0.15, and various values of M and N. Comparing these values with the values for P(d,;,

0, M,N, one can clearly see the effect of a bias on the asymptotic values for an M-ary
PO block code.
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Table 1

Asymptotic Values of Py (PO, ¢ My N, P_) 28 P >0 with ¢ = 0,

N 2 3 4 8 16 32 64

a|  6.250107% | 1,20004%107 | 1.76025%107" | 3.63499+10" | 6.20188*10 " | 8.64750%10 " | 9.82853%10 "
8 |3.00625+107° | 7.79724+10° | 1.16730%10 ° | 2.70254%10 | 5.70184*107° | 1.14250*10™" | 2.18528%10~
16 | 1.52588+107° | 3,05173*%107° | 4.57757+107° | 1,06807%107" | 2,28857%10" | 4.72914*10 | 9.80849+10"
32 |2.32831+107"° | 4.65661+107"° | 6.98402+107'° | 1,62081%107° | 3.49246%107° | 7.21775+10™° | 1.46683%10°°
64 |5,42101%107°° | 1.08420%107"° | 1.62630%107"° | 3.79481*10°"° | 8.13152+10 *° | 1,68051%107*® | 3.41524%10718
128 | 2,93874%107%° | 5.87747%107°° | 8,81621¥107° | 2,05712¥107° | 4.40810%10° | 9,11008*10°%% | 1,85140%10~%
256 |8.63617+107° | 1.72723%10 77 | 2,50085+107 | 6.04532%107 | 1,20543*107° | 2.67721%107°° | 5,44079%107°
512 | 7.45834%107°5% | 1,49167+107"% | 2,23750%107% | 5, 22084x107 % | 1,11875%107"%%| 2,31209*107%| 4,60875+10715°
1000 |9.33264%107°°? | 1,86653*107°°" | 2.79979+#10°°"" | 6,53285%107°"" | 1.30900%107°% | 2,80812%107°%| 5,87956%10~3%

ot
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Table 2

Agymptotic Values of P,z (PO, ¢, M, N, Pp) 28 P, — 0 with ¢= 0,001,

N 2 3 4 8 16 32 64
4 6.25010+107° | 1.21006+10" | 1.76028%10”" | 3.63504+107° |6.20194%10 ' |8.64763%10 ' 19.82854%107
8 |3.00638%10~° | 7.79749%10° | 1.16734%107> | 2.70262¢102 | 5.70202%107 | 1,14263*1070 |2.18534¥10
16 |1.52508+10° | 3.05193%10° | 4.57786+10°° | 1.06813+107 | 2.28872+107% |4,72944*10™* [9.60911%107"
32 |2,32860%107° | 4,65721+107'° | 6,98581*107"° | 1.63002+10° |3,49201%10~° |7.21867¥107° |1.46702%107°
64 |5.42240%102° | 1.08448+10° | 1.62672%10%° | 3.79568+107° | 8,13360+10 *° |1,68004+107% |3.41611%107°
128 |2.94024%10°° | 5.88048+10°° | 8.82072+10°% | 2,05817+107°% | 4,41036¥10°% | 9,11475%107% |1,85235%107"
256 |8.64502*%10~7% | 1.72900%10~77 | 2,59350*10~77 | 6.05151%10~77 | 1,29675%10~76 | 2.67995%10~7° |5,44636*107°
512 | 7.47363+107°5° | 1.49473+10°15% | 2, 24209410715 | 5,23154+10° 15 | 1,12104+10 1% | 2,31683+101% | 4,70839*107" %
1000 |9.37004+107°°7 | 1.87401+10°°° | 2.81101+10~°°" | 6.55003+107°°" | 1.40561+107°° | 2,90471¥10 7" | 5.90812*107"°
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Table 3
Asymptotic Values of Py (PO, & M, N, P, ) as Py—0 with = 0,01,

n M 2 3 4 8 16 32 64
4 [6.26001%10 0 [1,21281*107 | 1.76289+10 " |3.63975%107 | 6.20795%10 | 8.65205%10" |9.82968+10"
~3 -3 -2 -2 -2 -1 -1
8 |[3.91877%10 7.82218+%10 1,17103*10 2,71110%10 5.71961%10 1,14604%10 2,19146*10
16 [1.53567+107° | 3,07132%10 ° | 4,60695%10° | 1.07492*107 | 2,30326%10 % |4.75049%10 ¢ |9.67014%10 "
32 |2.35829%107° |4,71650%107°° | 7,07488*10 7% | 1,65081+107° | 3,53744%10° [7.31071%10° |1.48573+10 8
64 (5.56155¢107°" |1,11231%107"° |1,66847+107'° |3.89309+107"° | 8,34233*1071% |1.72408*107*® | 3.50378%10 18
128 |3,09309+¢107%° | 6.18617+10° |9,27926*10 ° | 2,16516%107°% | 4,63963+10 * |0.58857*107 | 1.94864%10 "
256 (9,56718+1077° | 1.91344%107 |2.87015%10 7 | 6,69703+10° | 1,43508+10° |2.06583%10 7% |6.02732%107°
512 |9.15300%10°'°° | 1,83062%10 5% | 2,74593%10 % | 6,40717+107" % | 1,37206%10 1%% | 2.83746%10 15 | 5_76645+10 153
1000 [1,39215%10~3°1 | 2,78431+10-%°" | 4,17646*10 %' | 9,74508*1073°" | 2,08828+10 %% | 4. 31568%10-39° | g, 77057 +1 0 ~300
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Table 4

Asymptotic Values of P.g (PO, ¢, M, N, P,p,) as P.,—0with < = 0,05,

Ny 2 3 4 8 16 32 64

4 |6,50378%107° | 1.25846%10" .82699+10 1 |3,75462%107 | 6,35321+#10™" | 8.75658*10™" | 9.,85545%10 "

8 |4.22091%107° | 8,44193*10>° .26361%107°  12,92363*10° | 6.16040+107> | 1,23138*10"" | 2.34365%10"
16 |1.78921+10° | 3,57839%10° .36754%107°  |1,25238%107° | 2.68348*10 1 | 5,54507%10™% | 1.12658*10°
32 13.20128%10 | 6.40257+107° |9.60385+10 " |2.24090+10°° |4.80192410° |9.92398%10° | 2.01681%10™
64 11,02482+107° | 2,04964%107'7 | 3,07446%107° |7,17375%107° | 1,53723%10 % |3.17695%10°'° |6.45638+%10°8
128 |1,05026*107° | 2,10052*107°° | 3,15078%10°° |7.35181%10°°® | 1.57539%10~>" |3.25580%10>" | 6.61663+10 ¥
256 |1,10304*1077° | 2.20609+107° |3,30913%1077% |7.72131+107° | 1.65457+10~7° |3.41044%1075 |6.94918%10~
512 11.21671x107" % | 2,43341+1052 | 3,65012+10 7% | 8, 51694+1075% | 1,82506*10 75! | 3, 77179410725 | 7.66525%10 15

1000 [1.95604*107%%7 | 3,91208*1072%7 | 5,86813+102°7 | 1,36923*1072% | 2,93406%10 2% | 6.06373*10 2% | 1,23231+10-2%5
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Table 5

Asymptotic Values of P, (PO, ¢, My N, F,) a8 Py»0 with ¢ = 0,10,

3 M 2 3 4 8 16 32 64

4 |7.81162%107% | 1,40886*107" | 2,03701%107" | 4,12271*107" | 6,79831*10" | 9.04987*10~ | 9.91633+10~
8 |5.34597%107° | 1.06634*107° | 1.50523%10° | 3.68270%107° | 7.72572*107° | 1.53008%10™" | 2.86591*10 "
16 | 2.85794%107° | 5.71580*107° | 8.57358*107° | 2,00089*10~% | 4,28606%10" | 8,85583%10™* | 1.79891+10~3
32 | 8.16784%10 1% | 1,63357*107° | 2,45035%10;° | 5,71749%107° | 1,22518%107° | 2.53208%10°% | 5,14574*10-2
64 |6.67135%107°° | 1,83427%107"% | 2,00141%107"% | 4,66995+107"% | 1,00070%10 17 | 2.06812%1077 | 4.20205+107
128 | 4.45070+10°Y | 8.90139%10~> | 1.33521+10 % | 3.11540%10°° | 6.67604+10~ | 1,37972%10°°° | 2, 80394%10-35
256 | 1.98087%10°7° | 3,96174%10°7° | 5,94261*1077° | 1,38661*1077¢ | 2,97131%10°7% | 6,14070%10~7 | 1.24795%10-7!
512 | 8,92385%10°1¢ | 7,84769+1071% | 1.17715+10 7% | 2,74669*10°14° | 5.88577+10 1% 1,21639+107%| 2.47202%1014
1000 | 1,00773%1072%% | 2,01546*107°%* | 3,02319%10 %] 7,05410%107%%% | 1.51159+10 *°| 3,12396+10°%%3 | &, 34860+10 253
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Table 6

Asymptotic Values of P.p (PO, e,M,N,P,, ) as P, >0 with ¢ =0.15.

> M 2 3 4 [ 8 16 32 64
4 |8.82239+10° |1.68664*10" 2. 42‘003*10”I 4.76137+10" | 7.40779%10 7" |9.42013%107 |9.97020%107
8 |7.78345¢10° | 1.55063*10~2 |2.31691%10~% |5.32283+107% | 1.10600%10  |[2,15125+107" {3.88766+%10
16 le.05821+10-5 |1.21180%10 |1.81735+10% |4,23997+10~* |9,08346%10~* |1,87634*10™ |3,80951%10°
32 (3.67019%10~° |7.34087+10°° |1.10106%10~° |2.56913*10™° | 5.50528*¥10°° |1.13776*107 | 2.31222%107
64 11.34703%107" | 2.60405%10°" |4.04108*10~"7 |9.42919+1077 | 2.02054+10 7" |4.17578+107'° |8.48627*10°
128 11.81448+10-%* |3.62960%10° |5.44344*107%* |1,27014*1075% | 2,72172%10 33 |5,62489%107° |1,14312+107
256 13.20234+10™°° |6.58468+10°° |9.87702¥10™°% | 2.30464*10°7 |4.93851%10 7 |1,02063#10™°° |2,07417*10
512 [1.08395%10 7195 | 2.16790%107 135 | 3.25185%10°"%5 | 7,58765+107"%% | 1,62592#10 % | 3,36024+107%* | 6.82888*10 " **
1000 |2.49174%10°2* | 498347510 2% | 7.47521+10 7% | 1.74422%10 7% | 3,73761+10 % | 7,72438+10 " | 1,56979*10 "
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In order to be able to compareP(d . , M, N, ¢(bias))and P(d ., M, N), we computed
P{dns M, N, e(bias)) for various values of M and N with « = 0.01 and 0.1. It was found
that given M and W, a value of d, {say d), depending on ¥, N, and ¢, could be determined
such that for ¢ < d;,< d, Py, M, N, e(bias)y > P{d .M, N) and for d < dwa< N,
Pld, ; » My N} > P{dins M, N, e(bias)). WhenM = 2, d = N/2 {independent of ¢}. It was found
that for < = 0,1, the value d was given by that value of dn, which maximized the value
™., M, N For e = 0,01, the corresponding value of d was slightly larger than the
value of 4 for - = 0,1,

P.p for Ternary Block Codes

Next we examine P_p for ternary (¥ = 3) block codes. In App. B the formula for
P.p i6 derived for both ternary ERO and PO block codes.

For a ternary ERO block code we have, assuming N/4 is an integer,

NA4-1 4 N/4
- N/ FZE N/gN pk 783k
PaERO, 3.8 2,0 = 3 (Lo Tl 3 () petvokis

j=0 k={N/2}~]
where
(N/8)-T-1
s=1v 3 (1) reyo
L=0

These curves are given in Fig, 5, Clearly, as P., tends to Zero, P.p(ERQ,3,RK, Pey) tends
to zero.

For a terna;y PO block code we have, using the definitions of D,y D5y d ;s d . s
dgy dy, and d, given in App. B,

N N N N Ao dmln) N- dmi.n
_ (QN”‘—I) Dio/\Pia dﬁ dmax B
Pp(PO. 3N Py) = = Z Z e AN Z 30 7 \bax "0y

22N N
By~ Byt =9 d
Wax
where
d. -1 d . —d d —e-1
i 7dg P I d , —dg-T i 3 in— d . —d—k
= (e Png eb -_>. I Pngebm tZ -2- m"?{ P{;ergm ¢
e=0 _]'=:ii—-n =0
9y
d
'] 2 ds—e
* § (e> PethbL?
e=d .,
1
with
d_-—d
x 0
4 —d a4 g -
S () et
Ltdx-e

These curves are given in Fig, 6 for N = 4, 8, 16, 32, 64, and 128, The approximations
described in App. B were used in computing the curves for N = 32, 64, and 128. Due to
the leiigthy computation time, N = 128 wag the largest value for which the approximation
wag computed. Clearly, as P, tends to zero, P 5 (PO, 3,N, P} tends to the asymptotic
value [2M+¢) - 11 /2™ which is the value of P(d_ =0, 3,N).
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Fig. 5 - Block error probability Py for Fig, 6 - Block error probability pfora
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tion of the bit error probability P, and of the bit error probability P,, and the
the block length N block length N

P_p for Quaternary Block Codes

Now we examine P.p for quaternary (M = 4) block codes. In App. C the formula for
P.p is derived for quaternary ERD block codes. We have, using the definitions of e, e, ,
e,5» and ey, given in App. C, and assuming that N/8 is an integer,

N/8 N/8 N/B  N/8

_ N/8Y (N8 N/BY (N/BYLx o(N/2)-X
P p(ERO, 4, N P) —Z Z Z (‘91)(912) (913)(e14)PebQEb R

e1=0 eg3=0 e;,=0 e1g=0
where
X=eytepteztey
and
.- ‘1, ifejtegte,2N4 orete,te,2N4 ore +e,te,2 N/4}
T, otherwise
with
T=A+(1-A)B+ (1-A) (1-B)C
and

& (N/8)
- E : N/B Y 134 ~€134
A (6134) Peb er
e13qT(N/A)=(eyre gbe )
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2 (Nm) € 1% A (N/8)
- —
B= § : €124/ F oy Qb 124

ey = { N/4 3= e1+e!2+e14}

N/B

N8y Ny -
- E 2123 At ®123
C= (’9123) Peb er )

295 SN/ o) teypbey3)

These curves are given in Fig, 7 for N= 8, 16, 32, 64, and 128, Clearly, as F,, tends
to zero, Pg (ERO, 4,N,P.,) tends to zerc. Due to the considerations mentioned in App, ©
concerning the computational problems encountered in determining P (ERC,4,N, P,,), the
determination and computation of the exact formula for P g(ERO, M, N, P,,) whenM > 4

is clearly not feasible.

Next let us consider the determination of P.p for a guaternary PO block code,

To determine P.p(P0,4,N, P_, ), one must be able to determineP(d;,d,.d;), and Pep
givend,, d,, and d; {symbolically, PEBE dysdayd;), where d;, dy, and d; represent the dis-
tances between the trangmitied block and M-1 = 3 nontransmitted biocks, If this iz pos-
sible, then we have

N N
P (PO, 4,N,P,,) = Z E E P(dy, dy, dy) P_pldy, a5, d5.
d 0

N
1:9 62-_-0 d3=

Hence, in defermiaing P.p for a quaternary PQblock code, a triple sum arises.
The computational difficulties in evaluating this expression are due to the problems
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Fig, 7 - Block error probability P, fora
quarternary {M=4} ERC block code as a
funciion of the bit error probability
and the block length N
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involved in the evaluation of | |d1, d,, d,since, due to the independence of the blocks,

we have
NY/N N
d, J\dy ) \d;
P(dy,dp,d3) = P(d) P(dp) P(dyy = 2 2 2~ » "2,

23N

or in the case of an ¢ bias
(dy+d,+dq) AN—(d,+d,+d ;)
NN N PR U AR 2 1" %27 %3
P(d,, d,, dy) = [(1/2) — 2¢%) [(1/2) + 2¢%] .
e = (5) () (o) 0

Even the use of P(d;., 4,N) in the place of P(dy, d;, d3), which reduces the triple sum
to a single sum, does not solve the problem of computing P.|dy, ds, d3 since we then
have to compute P,gld,_ ., which involves the additional problem of choosing values for
d, and d3, if say d; = d_,, and hence introduces considerable error. Due to these con-
siderations the direct calculation of P_(¥0,4,N, P_,) was not carried out, and it ig clear
that the determination and computation of the exact formula for F_, (PO, M,N, P} when
M > 4 is not feasible.

Determination of F.3 by Simulation

Since we could not determine P,y (ERO,M,N,P_,) by exact analytic methods for m > 4,
and since the same is true for P,5 (PO, M, N,P,;,) When M > 4, we next considered simula-
tion of our M-ary communication system on the digital computer in order to derive
estimates for P.p in either the ERO or PO case. A description of the simulation pro-
gram is given in App. D.

Let us consider the estimation of P,p(ERO, M,N,P,,) using simulation. If we fix m,
then the parameters affecting the simulation results are P.,, N, and the number of times
n that the simulation program is repeated. If we generate n error blocks each having N
bits, with the probab1l1ty of a bit error [P(1)] equal to P, then we would theoretically
expect Ky(n) = n(K)Peb Q¥-%  error blocks to have K bit errors. Due to the character-
istics of a particular random-number-generator algorithm, we find experimentally that,
although these theoretical values are rarely met in practice, if we apply a x? goodness
of fit test to the observed and theoretical values, then we would accept the hypothesis
that the computer is giving us a probability of bit error equal to P,.

In order that the relative frequency of a block error should approach P,y (ERO, M, N,
P.), we must have n large enough 5o that, over the range where K bit errors can )
influence the block error count, Ky(n) is nonzero. This assures that a sufficient number
of useful samples exists to make the results of the simulation meaningful. We might
conclude immediately that Ky(n) should be nonzero for N/4 < K < N. Due to the dependency
relations caused by any M-ary ERQ bleck code, we can replace the upper limit of ¥ on
K by a smaller upper limit since beyond this limit the probability of a block error will
necessarily be equal to one. For M = 3, this upper limit becomes (3N4)-2, and for
M = 4 the upper limit is (5N/8)-L If it is possible to make Ky(n) nonzero over this
restricted range, then the simulation answer can be taken as the relative frequency of

error. The term representing the probability of a block error for N = K z upper hm1t
+ 1, which is given by

NYok ne
(K)Pele:bK !

k=upper limit+l
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may be added to the relative frequency measure to give a betier approximation to

P.g (ERG, M,N, P_% If nis sufficiently large and P,y >0. 30, then the simulation-derived
relative frequency measure 18 quite close to P,g(ERD, M,N,P,;,) since Kyin) is nonzero
over more than just the restricted range, and hence the additional term is not necessary
and, in fact, is usuvally redundant as far as the error count is concerned.

The choice of n in practice was governed by the ability to cover as much of the range
of significant values as possible without making the run time of the simulation program
too long, yet allowing enough {rials so that the relative frequency would approximate
Pg{ERD, ¥,N, P,y within an accuracy of 2%. We decided to set n = 10, 000 since this
value was consistent with our computational time cobjective and also allowed a relative
frequency approximation to be significant for P.p (ERO, ¥, N, Pe) > 0. 01 . Since we always
have the relation that P.g (ERO, 2,N,Pen) < P.g {ERO, M, N,Pe,) for # > 3, and since we know
all the values for Pg (ERD, 2,N, P, ), We can, given M and N, choose Py, So that Pz (ERO,
2,N, Pey 2 0. 01, and hence so that P.g(ERO, M, N, P..) > 0. 01,

Table 7 shows results of the simulation when W = 4 for »n = 10, 000 trials per simula-
tion run given various vaiues of ¥ and P, . The examples given in Table 7 show clearly
the interplay between n, N, and P, . As an example of the effect of increasing n, if we
had set n = 30,000 and computed the relative frequency for N = 8 and Pep, = 0. 05, then
the result of simulating P.p would be 3.15x10-?, with a run time of 25 sec, For small
values of N, we can increase n {o gain accuracy without greatly increasing the run time
of the simulation program. For large values of N, accuracy and run time are in direct
competition, such that a preatily increased run time will resuli in ondy a slight gain in
accuracy. For small inereases in M, the run time may not change significantly since
the upper limit on X decreases as M increases, and therefore fewer of these increased
iength correlation decision procedures will be performed.

Now let us consider the estimation of P, (PO, M,N, P} using simulation. The factors
affecting the simulation resulls are M,N, P_,, n, and the generation of the PO block code
for ¥ and N

Let us assume that the problem concerning the fime it takes to generate the PO block
code has been taken care of, we then examine the effects of the remaining paramefers.

Given n, we would theorelically expect 7i(d,; ) = nxP{d;,M,N}, iterations to have
a POblock code with minimum distance d,,,. If we apply a x¥? goodness-of-fit test to the
observed and theoretical values of fa(d,;,}, then we would accept the hypothesis that we
have indeed generated PO block codes with Plbyj=1=Pby=0)=1/2(i=1,...,M; j = 1,...,N),
In order that the relative frequency of a block error should approach P (PO, M,N, Py,
the observed values of 7i(d,, must be nonzero over the range of d_;, which can influence
the error count. The worst problem here occurs when P, is small, and hence the small
values of 4, exert the most influence on the error count, but these values of d,;, are
usually such that n(d,;,) is zero unless M is very large, possibly on the order of twice the
value of N.

Unlike the ERO case, we must carry out the correlation operation for each iteration.
This adds greatly to the run time. The larger that M and ¥ are, the larger is the increase
in run time.

Now let us consider the problem of the time reguired to generate the PO block code.
The CDC 3800 computer located at NRL generates a real-valued uniform random number
on {0,1) in 34x10-° sec., For each iteration we need MxN such numbers to determine the
PO code. Hence, it takes 34 xMxNx10"" gec to generate a PO block code. Since this must
be done for each iteration, then for n= 10* iterations we find that it takes 0. 34xMxN sec
for the simulation program to generate the desired PO block codes.
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Table 7

Comparison of Simulated (Approximate) P.p Values with Analytical (Exact)
Values for an ERQ Block Code with M=4, The Number of
Trials n for Each Simulation Run was 10, 000,

P .z (ERO, 4,N,P_,) Computer
, . Time
N P.y, Simulated Analytical (sec)
8 0.2 3. 47%107" 3. 414%10™" 19
8 0.1 1,12%107! 1.136%10 7 20
8 0. 05 2.98+1072 3. 267%10°2 20
16 0.2 1. 33*10-1 1.282%101 24
16 0.15 5.57%10 2 5. 255%10~2 23
16 0.1 1. 37%10~2 1. 326%102 22
16 0.05 9*10—* 1. 044*1073 21
32 0. 45 6. 82%10 1 6. 858*10! 46
32 0.20 1. 83%102 1. 86*%10 2 33
32 0.15 2. 3%¥10°° 2. 976%10 > 28
64 0. 35 1.36%10 ! 1. 342%10! 79
64 0. 30 3. 74%102 3. 584%102 71
128 0. 40 1.58*10! 1.537*101 139
128 0. 35 2. 7%10 2 2. 547%102 141
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As an example of how many seconds are involved, the following table lists values of
0. 3= ¥« for several M andN,

N‘ 3 16 64

B4 85. 28 sec 348. 16 sec 1, 382. 64 sec
L 1024 704. 48 sec 5570. 56 sec 22, 282. 24 sec

Clearly, except for emall values of Mxn, the fime involved in the generation of the PO
block codes restricts the use of simulation in determining Py (PO, ¥M,N,P.) -

The problems associated with the simulation of Pz (ERC or PO, M, N, P.) as ocutlined
above leave us with two main avenues of approach. The first approach involves an in-
vestigation of the use of assembly language programming in order to decrease the re-
quired run fime of the simulation program. The second approach involves an investiga-
tion of the use of a special-purpose statisticaldevice. Such a device becomes extremely
useful when altempis to eircumvent the problem of excessive run times are not success-
ful, since iis use is notf limited by the cost of long run times as is the case for generai-
purpose computers. Thus, a special purpose statistical device can allow us to accom-
modate large values of ¥ and N and small values of Py, in computing P.o(ERD OT PD, M,N,
P}, We will examine these approaches as part of our continuing research into these
problems.

If we compare the P,5 {ERQ, 2,N, P, and Pz (PD,2,N,P.,) curves, or the P.p(ERC, 3N,
P.p) and Pp{ERD, 3, N, P,,) cuirves, we notice that for high P, values, 1.e., P, close to
1/2, the PO curves surprisingly have a lower probability of block error than the corre-
sponding ERQ curves {i. e., for the same values of Mand N). For low values of P,
i.8., P less than 10-3 the ERO curves have a lower probability of a block error than
the corresponding PO curves, This is due to the fact that the ERC curves tend to zere
as P, tends to zero, whereas the PO curves tend to their respective nonzero asymptotic
values as P, tends to zero. The exact values of P,, for which the above relationships
hold depends on the values of ¥ and N,

AREAS FOR FURTHER INVESTIGATION

In the course of carrying out this research, we have examined closely M-ary com-
munication employing a bit-by-bit decision technigues, As an area of further investiga-
tion we intend to examine the use of block decision techniques. The techniques o be
employed were outlined and examined for certain binary block codes{1). Thisisa
natural extension of this work due to the processing gain inherent in the use of block
decision technigues. The use of block decisions is extremely imporiant because of the
fact that with block decisions the representation of Py in terms of an exact formula
capable of being easily computed for all values of M and N seems io be possibie.
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APPENDIX A

GENERATING M-ARY ERO AND M-ARY PC BLOCK CODES

In this Appendix, we will describe some methods of generating M-ary ERO and
M-ary PO block codes.

Let us consider first the generation of M-ary ERO block codes. An M-ary ERO
block code can be derived by utilizing a device which can generate the Walsh functions
of order N{Al, A2). The Waish functions of order N are N time functions taking on the
value ( or 1 over each of N time periods of length t{t = bit time} such that, except for the
all zeros Walsh function, each function has N2 geros and N2 ones, and the correlation
between any two functions is zero. Thus, by removing the all zeros Walsh function,
the remaining functions form an M = N-1 ERO block code.

Another method of deriving an M-ary ERO block code uses maximal length linear
shift register sequences (A3). If N = 2K then we know that there is a maximal length
linear shift register sequence of length 2XK-1. From the properties of such a sequence,
we know that if we add a zero to the sequence and each of its 2¥-2 cyclic shifts, then
these form an M = 2¥-1 ERO block code.

Now let us consider the generation of M-ary PO block codes. One method of deriv-
ing an M-ary PO block code utilizes a random number generator which generates MN real
numbers u;; (i = ,2,...,M and j = 1,2,...,N) having a uniform distribution over the
interval [0, 1]. Given such a random number generator, which can be found as a library
function in most large computers, if we set b;;= 0 when 0 < u;; <1/2, and b = 1 when
1/2 < uy; < 1, then the resulting M by N matrix B = [b;;] forms an M-ary PO block code.
There are many available methods of generating real numbers having a uniform distribu-
tion on [0,1] (A4). Another method of deriving an M-ary PO block code involves the out-
come of M trials each consisting of N tossings of an unbiased coin (i. e., P(head) =
P(tail) = 1/2). From the MN outcomes of tossing the unbiased coin we form MN binary
numbers b;; (i =1,2,...M and j =1,2,...,N) where by; = 0 if the jth outcome of the ith
trial is a head, and b;; = 1if it is a tail. Clearly, the resulting matrix B = [b;;] forms
an M-ary PO block code.

In attempting to generate an M-ary PO block code, one must consider the effect of
the inherent bias found in any generation method. Suppose that instead of having
P(y, = 0)=P(bj=1)=1/2(i= 1,2,...,M and k=1,2,,..,N) due to a bias, we actually have
P(bjx = 0} =1/2+¢ and P(b;y, = 1) = 1/2—e. In this case, N, and Ny; (the number of zeros
and ones, respectively, in block B;) are random variables having binomial distributions
B(n,p) withn=N andp = 1/2+ < and p = 1/2 - ¢, respectively. Thus, D;; (the number of
disagreements between blocks B; and B,) is a random variable having a binomial distribu-
tion B(n,p) withn=N and p = 1/2 -2:2 " Thus, a bias causes the M P0 blocks to become
more alike. This decreases the ability of the code to resist errors, and hence increases
the probability of a block error.
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APPENDIX B

DERIVATION OF P_; FORMULAS FOR TERNARY ERO AND PO BLOCK CODES

In this Appendix we derive the probability of block error formulas for ternary ERO
and PO block codes.

Let B={B,,B,, By denote a ternary ERO block code, and suppose that B is the
transmitted block. If N,,;, N;,, N;y, and Ny; represent the number of bits k such that
by ™ bae=bags (g™ Do) # bags (b1e=baw) # bax, and (by= bay) # by, respectively,
then from the properties of ERO bilocks we have, assuming that N/4 is an integer,
Niz2s = Nia = Nyz = Nag = N/4. The N/4 bits denoted by Ni3 do not influence the proba-
bility of a block error since a bit decision error with respect to any of these bits does
not affect the correlation decision. Hence, we must consider the remaining 3N/4 bits
in determining P.g. If e,y, e,3, and e;, represent the number of bit errors in the N,,,
Nyso andN , groups of bits, respectively, then a block error occurs if
(i) e,y < N4 (and eogtegn 2 N/4, or eszteyy 2 N/4)
or

(ii) e,y = N/4.

Hence,
(N/4)y-1

N/4
_ N/4 - N/4\ ok ~(/4)-K
RaErosngy = 9 (YOrLagn sl S (%) es0am
J=0 K=(N/4)-J

(N/4)-]-1 N/4
1 N/4)—-L N/4
1+ Z (L)Pebogb ) + P4,

E=0

Next, let B = {B;, B,, B;} denote a ternary PO block code, and suppose that B, is the
transmitted block. If D;; denotes the number of bit disagreements between blocks B; and
Bj, then from the properties of PO blocks given above we know that D,, and D;, are in-
dependent binomially distributed random variables B(n,p) with parameters n=N and
p = 172, Hence, the joint probability of D;, and D,; is given by

N N
B} _ (Dlz) RE .
P(D125D13) el P(DIQ)P<D13) - -"'Q—N— ;ﬁ (D12'D13 - 0, 11 ""N)'
Let d,;, and d,,, equal the minimum and maximum of D;; and D3, respectively.
Let d, equal the number of bits k such that b, # (b, = by ). Clearly, 0 < dp<d;,.
The number of bits k such that (by, # b3,) = box 18 Dyy — dy, and the number of bits &
such that (by, = bz ) # bskis Dyj3 — dy. Given D,, and D,,, or equivalently d and
dpax » the probability distribution of d, is given by

(dmin) (N - dmin)
d0 dmax B dO

min

P(dy) =
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It is easy to show that

dpin
P(dy) = 1 (d

= 0,1, .., M)
dg=9

Let e;, e,, and e, denote the number of errors in the bits where by, # (ba = bay) ,

{byy = bSk) # by, and (by, = by ) £ Iy, respectively. Clearly, from the above we
have 0 <e; < dy, 0gey £ Dyy—dg, and 0 <e; < Dyy —d, Let

dmin’fzf (dmin even) dmax/g’ {dmax even)
d, = { and d = {
(dmin + 1y/2, (dm_m odd) {d + 1372, {d

max

odd)

max

Now given D,,, D,,, and d,, a block error occurs when

e;te, 2d,, or e tey2 d,: d.. = Dy and d_, = Dy
{i) ey < d;, and 1

e;tey 2 d.i’ or ey + ey 2 dx; d;n~ D3 and c!mlx =Dy,
or
(11) e, 2 di'
Hence
( ) N) d . (m]ﬁ dmlﬁ
min d{) dmx
eB(PG 3, N Peb} 2 E —-.L E N R
Dyy=0Dy5=D dg=0 ( )
ax
where
4,1 d d in-ds d, —e—l
0 dg—e 4. —-d d_, ~dg-J 3 . —d a4 . —d—K
k=3 () pesels D ((in o) a1 B (o) el ofpe )
e=9 J=dj—e ) k=0 K
du d—do
d d d,—L
a3 (S e
e
e=dj %~

It we combine the terms of P 5(P0,3,N,P_,) when Dy, = 0, Dy = 0, or both D and
Di3= 0, then, since for all these terms we have R=1andd = o, the resulting term is
(2N*1 _ 1y/22N which is easily seen {o be the value of P{d,;, = 0,3,N). Thus, we can re-

write the above as

23N 22N
-1 Dy =1 dg=0 e

e L)l
P (PO.3,NP, )= ZZ(H)(DB) z (ﬁggzmjm ﬁ) r] + (& b
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It is readily apparent that this equation due to its complicated nature is lengthy to com- -
pute. The equation in this form was computed on the CDC 3800 for N =4, 8, and 16,

The total time required to compute these curves was approximately 2 min. The esti-
mated time required to compute the curve for N = 32 was 10 min. Due to this lengthy
computation timne estimate, methods of approximating the above equation were investiga-
ted. Instead of using the double sum over D;; and D;;, this was replaced by a single
sum using P(d ; , M,N) rather than P(Djp) and P(Dy3). Hence, one needed only to sum
over d,;, from 1 toN. But this introduced the problem that 4., was no longer defined
explicity. It was found that if d,.. was determined in terms of d,,, using an algorithm
which set d.., equal to d,;, plus the smallest integer greater than or equal to (N-d_; )/
(N/4), then the approximation was within 1% of the true value. As a further approxima-
tion, an algorithm was employed to determine d; given 4, and 4., and thus avoid the
summing of d; from zero to d,;,. This algorithm set d;, = d; if d ; fdyex-N < d;, and
set dy = dp;p=dpax—N i d o+ dpax-N> d;» This algorithm chose the most likely nonzero
value of dg consistent with the P(dy) distribution. It was found that this additional ap-
proximation introduced no significant change in the approximation to P.g (PO, 3, N, Pgp) -
The P.g curves for N = 32, 64, and 128 were computed using these approximations,
Despite the utilization of these approximations, it took almost 9 min to compute P, for
the case where N= 128. Hence, this was the largest value of N which was computed for
P (PO, 3,N,P,,) .

If we consider an ¢ bias, then P (PO, e(bias), 3,N,P,,) differs from P_g (P0Q,3, N,Pey)
only in that P(D,,,D, 4 becomes

" P Bh) = (DT:z) (Dljs) ((1/2) - 2607278 (172 4 262N~ Pua? ),



APPENDIX C

DERIVATION OF P,; FORMULA FOR QUATERNARY ERC BLOCK CODES

In this Appendix we consider the derivation of P _(ER0,4,K, P ;).

Let B = {By, By, B3, By} denote a quaternary ERQ block code, and suppose B, is the
transmitted block. IfN,, N,, N ,, N o, N, Ny, Nipg, and N3¢ vepresent the
number of bits k such that b, = by = by = by, by # (Py, = by = by (by = bay
# (b = bay(biy = bad # (baw = bag)r (b = bay) # (bay = bag), bag # (ba = bay = byds
by, # (by, = by, = by and by # (by= by = by), respectively, then from the prop-
erties of ERQ blocks we have, assuming that N8 is an integer, No= M = Ny = Ni3
=Ny = Nygz = Njgq = Nyag = N/8. The N4 bits denoted by Ng do not influence the proba-
bility of a block error since a bit decision error with respect t¢ any of these bils does
not affect the correlation decision, Hence, we must consider the remaining 7W/8 bits
in detETmiHing Pap- If €3y €12, B335 B44s €123 €124 and €134 I‘epresent the number
of bit errors in the Ny, Ny;, Nigy Ny, Npags, Nyge, a@0nd Npzq groups of bits, respectively,
then a block error occurs if

(i) ep teggt eyt ooy, 2N/4

or

(31} ey T eyt ooyt gy 2 N4
or

(iii) &) t egpt ey F ey 2 N4
Hence,

N/B  N/B 0 N/B N/8 N/EY N8N NGNS (o teypte ste ) (N,"Z)—(g\l*eizi'ela-}el‘l)
Fen(BRO. 4.8 Foy) :Z Z Z Z(El) 312)(613)(‘*14>Peb Qe ’

€j=% 1270 ry3=0 3420

where
1, if o t ey F ey 2 N/4, ore) + e+ ﬂHQN/‘L or By ¥ e, toepy 2N/4
i T, otherwise
Here
T=A+(1-0B+ (1A (I-BC
where

N/S N8 ‘8
- 2 SN 5124 (NEI—e 5y
A= 8134)Peb er !

By 34 N/ E ) (o rey grep )
M8

~ N/& €4 (N/R)—&
B= E 8124\) Peb er 124

u124={N/4)—(r'j+312+Q! 4)
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and

_ N/S 23 (N/S) e
C= Z (8123)Peé Qeb 123

e123=(N/4)—(e re p4ey )

This equation was programmed directly on the CDC 3800 located at NRL and gave

P.g (ERO,4,N, P_y, using various values of P, for N up to 128, without experiencing any
computahonal dlfflcultles When the case N= 256 was tried, the run time increased so
drastically that it became quite apparent that, in order to compute P.g(ERO, 4, 256, P_,),
some method of approximation would have to be employed. The fourfold summation
process involved in the exact formula constituted the major computational difficulty.
For N= 64 and N= 128, the summation process involved 6561 and 83, 521 iterations,
respectively. From the run times for these values of N, it was estimated that each
iteration took approximately 1.5 msec. Since the case N= 256 involved 1, 185,921
iterations, the estimated run time was approximately 30 min. The estimated run time
for the case N= 512 was found to be 8 hr, ' '

Now we can replace the fourfold summation from zero to N/2. But given ¢ errors,
where 0 < e < N/2, we must then choose partlcular values of ey, ey,, ey4, and ey, say
e}, ej; ;i3 ,and e}, , such that eftejptejste, =, and

COIERC RN RIS 35 3) 3 3t i KL e

el e12 €13 €14
{such that ejtejs
te13ter4=e)

where

s=pe Q2-e p .
eb Teb ®blejergiez.eyy

Upon attemptmg to carry out this scheme of approximation, it was found that the choice
of e} , e}, ,¢l3,and ¢, was dependent on P, and e. This made the approximation

as difficult to carry out as the exact formula. Due to these factors, the case N = 128 was
chosen as a stopping point for the computation of P.g (ERO,4, N, Pep).



APPENDIX D

DESCRIPTION OF THE DIGITAL COMPUTER SIMULATION
OF THE M-ARY COMMUNICATION SYSTEM

In this Appendix we describe the digital computer simulation of our M-ary com-
munication system.

To initiate the simulation we must generate and/or store the ¥ by N matrix for an
M-ary ERO or PO block code. In the case of an M-ary ERO block code, we can simply
enter the M blocks of N bits as data into core storage. In the case of an M-ary PO
block code, we can use the random number geperator technigue described in App. A to
generate the desired PO matrix. For the PO case, we will have to generate a new
by N matrix for each iteration of the basic program.

The choice of a block to be {ransmitted can, without loss of generalily, be made in
a deterministic manner and held constant over all iterations. The use of digital simu-
lation aliows us to bypass the transmitter and receiver portions of the gystem,

To simulate the channel's action on the transmitted biock we generale an error
block ¢ = ley,...,eq] using the random number generator such that Ple;, = 1) = P, the
probability of a bit error. To do this we generate, using the random number generator,
real numbers uy,...,uy having a uniform distribution on (0,11 and we set e; = 1if
0 < w, <Py, and e, = 01if P, <u, < 1. Now by adding modulo two the transmitted block
and the error block, term by term, the block of bit decisions D results,

Next we perform the matrix operations necessary to compute ~7,,..., ¢y Now
using the fact that the transmitted block can be chosen deterministically, and this choice
ig the game for all iterations, it is quite simple to test the values o,,... Py for an
error,

Finally, we need only record the errors and, after repeating the desired nomber of
jterations, determine the relative freguency of a block error.

The simulation as described above was implemented in FORTRAN computer
language.
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